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Abstract— Recognizing micro-expressions underpins signif-
icant and critical research and significant application. We
speculate that this problem requires the understanding of the
subtle face movement, integration of face structures and a
solution of limited training data. In this paper, we build an
effective micro-expression recognition system that leverages
techniques stemming from these speculations. First, we intro-
duce an optical flow method based on the onset frame and
the apex frame to encode the subtle face motion. This has
already been validated by prior research. Second, to obtain
discriminative representations from the rigid face structures,
part-based average pooling is proposed to inject structure priors
to the network. Finally, because the system suffers from small
training sets, we propose to transfer domain knowledge from
macro-expression recognition tasks to micro-expression recog-
nition. Specifically, we adopt two domain adaptation techniques
including adversarial training and expression magnification
and reduction (EMR). Through experiment, we show that the
proposed system achieves very competitive results on the 2nd
Micro-Expression Grand Challenge (MEGC).

I. INTRODUCTION

Micro-expressions (ME) are subtle muscle movements

within 1/25 of a second. In addition to the expressions being

short, micro-expressions are more likely to be those sup-

pressed expressions in application settings. Compared with

the expressions that are made consciously, micro-expressions

are more likely to reflect true feelings and motivations.

Research outcomes of micro-expression recognition (MER)

can be applied to areas such as national security, clinical

diagnosis, the judicial system, and political elections. MER

is very challenging due to the short ME duration and the low

intensity of facial muscle movements. These challenges mean

that human performance on micro-expression recognition

remain at a considerably low level. Therefore, it is important

to design effective systems to recognize micro-expressions

automatically.

Early work on MER mainly focused on extracting hand-

crafted features from micro-expression video clips. For ex-

ample, Local Binary Pattern with Three Orthogonal Planes

(LBP-TOP) [2] extracts discriminative features related to

dynamic textures. It is applied as the feature descriptor in

the micro-expression recognition task in [1] and is widely

used as the baseline method in this area. Other variants

of LBP-TOP like spatiotemporal LBP with integral Projec-

tion (STLBP-IP) [3] and discriminative spatiotemporal LBP

(DSLBP) [4] have also been investigated.

Optical flow can extract representative motion features

which are robust for the diversity of facial textures. Optical

flow estimation can be used to enrich the input except for

RGB channels [5]. Other work considers optical flow as a

data prepossessing step for other handcrafted features based

on optical flow. For example, The MDMO [15] computes the

oriented optical flow vectors to form histograms from ROIs,

which is discriminative for micro-expression recognition. By

accumulating the derivatives of the optical flow, Bi-Weighted

Oriented Optical Flow (Bi-WOOF) [6] utilizes the optical

strain to generate the weighted histograms, which can be

used to recognize micro-expressions.

Recently, motion magnification (MAG) was used to im-

prove the accuracy of micro-expression recognition tasks

significantly. As a data processing method, MAG magnifies

the motion features of the original micro-expression video

clips. A number of works [14], [7], [15] show the improved

recognition accuracy by introducing MAG.

Deep neural networks have shown competitive learning

ability on feature extracting and classification in many

fields including micro-expression recognition. Dual Tem-

poral Scale Convolutional Neural network (DSTCNN) [8]

apply 3-D CNN models on CASME I and CASME II [17]

datasets. Spatiotemporal recurrent convolutional networks

(STRCN) model the spatiotemporal motion deformations

and subtle changes by employing CNNs with recurrent

connections [14]. However, deep approaches suffer from

insufficient training samples. Even combining three micro-

expression datasets, the total samples are no more than 500 in

number. Therefore, it is worthwhile to design specific transfer

learning techniques for micro-expression recognition tasks

such that other facial datasets in the computer vision area

could contribute to MER.

Furthermore, the motion information of eyes, eyebrow,

nose, and mouth in the normalized and cropped face is highly

structured and related to expressions. Previous research does

not pay attention to these partial details of micro-expressions

but feed the features extracted from the whole face into the

classifier.

To solve the above issues, in this paper we proposed a part-

based deep neural network with two domain adaptation tech-

niques (adversarial domain adaptation and motion magnifica-

tion and reduction). Our deep method can automatically learn

to extract discriminative features related to facial parts. Addi-

tionally, the two domain adaptation techniques help to enrich

the available training samples. Our code for this challenge is

available on https://github.com/xiaobaishu0097/MEGC2019.

II. METHODOLOGY

A. Reprocessing

Video clips recording the micro-expressions contain many

variations in the natural scene that are not related to facial ex-

pressions, such as background and head posture. To minimize978-1-7281-0089-0/19/$31.00 c©2019 IEEE



Fig. 1. Network structure. The convolutional layers extract the feature tensor (the feature maps) from the optical flow. Two average pooling are applied on
the top and bottom part of the feature tensor separately to obtain the dimension-reduced feature vectors, following by a two layer fully connected classifier
for each feature vector.

the negative impact of such irrelevant features, we introduced

the following data preprocessing steps:

• The OpenCV pre-trained HOG and the Linear SVM

object detectors are used to detect face regions.

• We utilize the method in [23] to identify facial land-

marks in the above face regions, which has already been

implemented in the dilb library.

• We obtain the normalized rotation, translation, and scale

representation of the face based on the facial landmarks

by using the OpenCV built-in facial alignment algo-

rithm.

B. Motion Feature Extraction

The micro-expression features are highly correlated to

subtle motion in the face area. We use optical flow methods

to extract motion features. To reduce computation cost, the

onset frame and the apex frame of the micro-expression clips

are picked to compute the optical flow, which has the same

image size as the original two video frames. The onset frame

is the first frame and the apex frame has the maximum

motion compared with other video frames.

Resnet [10] can extract discriminative image representa-

tions by supervised learning. We choose Resnet18 as the

backbone of the optical flow encoder and the pre-trained

weights based on the ImageNet2012 dataset as initialization.

C. Part-Based Classification

Local details in an input source contain discriminative

information. Hence, intelligent systems need the ability to

pay attention to local details in recognition tasks. The PCB

method [16] splits feature map in the backbone of the

convolutional neural network into several sub-tensors. They

then used average pooling and 1*1 convolution to perform

dimension reduction on each sub-tensor to obtain part-based

feature vectors. Finally, multiple classifiers perform classi-

fication training based on the corresponding feature vector.

The part-based mechanism has achieved competitive results

in personal re-identification tasks. Inspired by this, we split

the feature map extracted from the last convolutional layer

of our proposed feature encoder into the top and bottom

parts, which are more representative for the eyes area and the

mouth area separately. Two individual branches of average

pooling and classification are applied on the above two sub-

tensors. At the same time, we concatenate the outputs of

the first fully connected layer in two branches into a single

vector to perform the expression recognition classification

task by a third following fully connected layer. The details

of the part-based mechanism are shown in Fig. 1.

D. Supervised Domain Adaptation

Because of the small samples size of the micro-expression

recognition task, the domain adaptation is applied in our

approach by introducing the macro-expression recognition

task (CK+)[11]. We manually categorise the original macro-

expression labels into the same label space with the target

domain (MEGC2019 challenge) such that they could perform

supervised trained in a shared model.

We propose a domain adaption technique called Expres-

sion Magnification and Reduction (EMR) for the micro-

expression domain and the macro-expression domain. We

assume that the apex of the micro-expression is an in-

evitable intermediate process for macro-expressions. The

middle frame between the onset frame and the apex frame of

the macro-expression video clip is picked. We call this step

as macro-expression reduction. To maximize the similarity

between the micro-expressions and macro-expression, we

also perform micro-expression magnification. Motion Magni-

fication (MAG) amplifies subtle motions and it is widely used

in micro-expression recognition tasks [14], [15] to improve

recognition accuracy. We utilize the open implementation

of Eulerian Video Magnification (EVM) from Massachusetts

Institute of Technology (MIT) to magnify micro-expressions.

As illustrated in Fig. 2, the similarity of the intensity of

the macro-expression and the micro-expression is increased

as the result of EMR. Furthermore, to bridge the data

distribution gap between the source domain and the target

domain, adversarial based domain adaptation techniques are

widely investigated in recent years to obtain domain invariant

features [12], [13]. We use the input of the last fully con-

nected layer of the classifier as the input of the discriminator,

which consists of two fully connected layers. The model

structure is shown in Fig. 3

E. Learning objective of the whole system

We consider Lt, Lb as the classification losses for the top

and bottom part branches respectively in Fig 1. The clas-

sification loss and the adversarial loss for the concatenated

feature vector in Fig 3 are called Lc and Ladv. In summary,

the overall learning objective of the whole proposed system



Fig. 2. Examples of EMR. At the top, the apex frame of one macro-
expression sample is reduced by replacing it with a middle frame between
the onset frame and the apex frame. At the bottom, the apex frame of one
micro-expression sample is amplified by EVM.

is to minimize the following loss function:

L = Σi=N
i=0 Lt(yi, ŷi) + Lb(yi, ŷi) + Lc(yi, ŷi)−

λΣi=N
i=0 Ladv(yi, ŷi),

where yi is the ground truth and ŷi is the prediction. The

model parameters are updated through back propagation

based on this objective function.

Fig. 3. The pipeline of classification and adversarial domain adaptation. The
two feature vectors from the part-based average pooling are firstly reduced
to the low dimension size by single separate fully connected layers. Then,
the reduced feature vectors are concatenated into a single vector which is
the input of the discriminator and the last classification layer.

III. EXPERIMENTS

A. Datasets

Three spontaneous facial micro-expression datasets are

used in this challenge: CASME II [17] dataset, SAMM [18],

[19] dataset, and SMIC [20] datasets. To compose the, into

a single dataset and perform a unified evaluation metric,

emotion classification labels in all three datasets are appro-

priately mapped into a common reduced subset including

negative, positive, and surprise. This consolidation includes

442 samples (145 from CASME II, 133 from SAMM,

and 164 form SMIC) from 68 subjects (24 from CASME

II, 28 from SAMM, and 16 from SMIC). As described

in the last section, the CK+ dataset is also introduced to

implement domain adaptation. CK+ includes 327 video clips

with expression labels which can also be relabeled into the

above three labels.

B. Evaluation Metric

The Leave-One-Subject-Out (LOSO) cross-validation is

applied to guarantee subject-independent evaluation. There-

fore, 68 training and testing procedures are performed.

Because of the imbalanced label distribution, Unweighted

F1-score (UF1) and Unweighted Average Recall (UAR) are

considered as performance metric here to avoid the proposed

method overfitting a certain class. Given True Positives

(TPc), False Positives (FPc) and False Negatives (FNc) for

each class c (C classes in total) over 68 folds, UF1 can be

calculated as:

UF1 = ΣC
i UF1i/C,

where:

UF1c =
2 ∗ TPc

2 ∗ TPc + FPc + FNc
,

and UAR can be formulated as:

UAR =
1

C
ΣC

i Accc,

where:

Accc =
TPc

nc
.

C. Results and analysis

The LOSO experiment results based on the MEGC2019

official evaluation metric are shown in Table I. According to

Table I, Part-based model plus Emotion Magnification and

Recognition (EMR) outperform the baseline method LBP-

Top significantly. The Unweighted F1-score (UF1) and Un-

weighted Average Recall (UAR) over three datasets achieved

0.7663 and 0.7531 respectively while they are only 0.5882

and 0.5785 for LBP-TOP. If we adopt the adversarial domain

adaptation mechanism additionally, both UF1 and UAR can

be improved over 20 percentage points on the composite

dataset. Therefore, the domain adaptation techniques are vital

for micro-expression recognition tasks with small datasets.

The proposed methods also outperform the baseline method

on each individual part of the composite dataset. More

specifically, the system in the last line of Table I, which

contains all techniques we proposed, achieves better results

on both UF1 and UAR on SMIC dataset and SAMM dataset.

However, the adversarial mechanism does not show the same

effectiveness on the CASME II dataset. The inconsistency

may be caused by insufficient training samples in the micro-

expression dataset. Therefore, exploring better transfer learn-

ing techniques is essential for further works targeting micro-

expression recognition tasks.

IV. CONCLUSION

In this paper, we proposed a neural micro-expression

recognizer to solve micro-expressions recognition tasks with

small datasets. The part-based model and two domain adap-

tation techniques are our main contributions. The part-based



TABLE I

THE UNWEIGHTED F1-SCORE (UF1) AND UNWEIGHTED AVERAGE RECALL (UAR) OF THE BASELINE METHOD AND OUR METHODS

Method Full SMIC Part CASME II Part SAMM Part
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP 0.5882 0.5785 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102
Part + EMR 0.7663 0.7531 0.7001 0.6859 0.8615 0.8398 0.7180 0.6994

Part + Adversarial + EMR 0.7885 0.7824 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152

model forces the encoder to learn representations focusing

on local motions on the face, which is discriminative for ex-

pression reconnecting. Adversarial domain adaptation helps

to extract cross domain invariant features between micro-

expressions datasets and macro-expression datasets. Motion

magnification and reduction reduces the distribution gap

between the two types of expressions. The LOSO experiment

results show that our proposed methods can achieve much

higher UF1 on each dataset in the 2nd Micro-Expression

Grand Challenge (MEGC).
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